

~~ ~~~~ ~ -. -.

.

Cy 2: gcz--v nt
e .

~ ~. ~~ ___. _- . .

ORNL/TM-11814

Engineering Physics and Mathematics Division

Mathematical Sciences Section

A SUPERNODAL CHOLESKY FACTORIZATION ALGORITHM FOR
SHARED-MEMORY MULTIPROCESSORS

Esmond G. Ng
Barry W. Peyton

Mathematical Sciences Section
Oak Ridge National Laboratory

P.O. Box 2009, Bldg. 9207-A
Oak Ridge, T N 37831-8083

Date Published: April 1991

Research was supported by the Applied Mathematical Sci-
ences Research Program of the Office of Energy Research,
U.S. Department of Energy.

I I

Prepared by the
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, Tennessee 3783 1
Managed By

MARTIN MARIETTA ENERGY SYSTEMS, INC.
for the

U.S. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-840R2 1400

3 q Y 5 b 0335017 3

Contents

1 Introduction . 1
2 Background material . 2

2.1 Notation and terminology . 2
2.2 Sequential sparse Cholesky factorization 3

2.4 Parallel sparse Cholesky factorization 8
3 Supernodal Cholesky factorization algorithms 10

3.1 Notion of supernodes . 10
3.2 Sequential supernodal Cholesky factorization 12
3.3 Parallel supernodal Cholesky factorization 14
3.4 Scheduling column tasks . 18

4 Numerical experiments . 19
4.1 Test problems . 19
4.2 Numerical results on an TBM RS/SOOO 21
4.3 Numerical results on a Sequent Balance 8000 22
4.4 Numerical results on a Cray Y-MY . 23

6 References . 27

2.3 Sources of parallelism . 5

5 Concluding remarks . 26

c

A SUPERNODAL CHOLESKY FACTORIZATION ALGORITHM FOR
SHARED-MEMORY MULTIPROCESSORS

Esmond G. Ng
Barry W. Peytori

Abstract

This paper presents a new left-looking parallel sparse Cholesky fac,torization al-
gorithm for shared-memory MIMD multiprocessors. The algorithm is particularly
well-suited for vector supercomputers with multiple processors, such as the Cray
Y-MP. The new algorithm uses supernodes in the Cholesky factor to improve per-
formance by reducing indirect addressing and memory traffic. Earlier factorization
algorithms have also used supernodes in this manner. The new algorithm, how-
ever, also uses supernodes to reduce the number of system synchronization calls,
often by an order of magnitude or tnore in practice. Experimental results on a
Sequent Balance 8000 and a Cray Y-MP demonstrate the effectiveness of thc new
algorithm. On eight processors of a Cray Y-MP, the new routine performs the fac-
torization at rates exceeding one Gflop for several test problems from the Harwell
Boeing test collection, none of which are exceedingly large by current standards.

- v -

1. Introduction

Large sparse symmetric positive definite systems arise frequently in many scientific

and engineering applications. One way to solve such a system is to use Cholesky

factorization. Let A be a symmetric positive definite matrix. The Cholesky factor

of A, denoted by L , is a lower triangular matrix with positive diagonal such that

A = L L T . When A is sparse, fill occurs during the factorization; tha t is, some of
the zero elements in A will become nonzero elements in L . In order t o reduce time

and storage requirements, only the nonzero positions of L are stored and operated on

during sparse Cholesky factorization. Techniques for accomplishing this task and for
reducing fill have been studied extensively (see [16] for details). In this paper we restrict

our attention to the numerical factorization phase. We assume that the preprocessing
steps, such as reordering to reduce fill and symbolic factorization to set up the compact

data structure for L , have been performed. Details on the preprocessing can be found

in [16].
In recent years, because of advances in computer architectures, there has been much

interest in the solution of large sparse linear systems on high performance computers.

In particular, there have been investigations into the solution of such problems on com-

puters with multiple processors [18]. Basically, multiprocessor systems can be classified
by how their memory is organized. In a shared-memory multiprocessor system, every

processor has direct access to a globally shared memory. In this case, the processors

can read from or write into the same memory location simultaneously. Of course, for

da ta integrity, writing into the same memory location at any time by more than one

processor must be synchronized. Examples of shared-memory multiprocessor systems

include the Cray Y-MP, Encore Multimax, Sequent Balance, and Sequent Symmetry.

Another way of organizing the memory in a multiprocessor system is to give each pro-

cessor its own memory to which the owner alone has direct access. For one processor
to access data in another processor’s memory, the two processors must communicate

with each other, for example, by message passing. Examples of distributed-memory

multiprocessor systems include the NCUBE 3200 and 6400, and the Intel iPSCI2 and

iPSC/iSSO. It should be noted that there are also hybrid multiprocessor systems in

which both local and shared memory are available, such as the BBN Butterfly.

In this paper, we are concerned with the factorization of a sparse symmetric positive

definite matrix A on a shared-memory multiprocessor system. This paper can be re-

garded as a sequel to [15], in which a parallel implementation of a sequential algorithm

from [16] was described. We will show however that the number of synchronization

operations (Le., locking and unlocking operations) required by the parallel algorithm

in [15] is relatively high; it is proportional t o the number of nonzeros in the Cholesky

factor L . The object of our paper is to describe a new version of the algorithm that

reduces the amount of synchronization overhead by exploiting the supernodal struc-

ture found in the sparsity pattern of L . (The notion of supernodes will be introduced

- 2 -

in Section 3.) The role of supernodes in improving both left- and right-looking sparse

Cholesky factorization algorithms is well documented [1,3,5,12,25,28]. The new parallel

algorithm uses supernodes to reduce memory traffic and indirect indexing operations

as previous algorithms have done, which is particularly important on vector supercom-

puters [1,3,5]. The primary contribution of the payer is the way supernodes are used

to improve the parallel efficiency of a left-looking algorithm.
,4n outline of the paper is as follows. Section 2 reviews the sequential and parallel

factorization algorithms discussed in [15]. Section 3 describes the notion of supern-

odes and their usefulness in a sequential sparse Cholesky factorization algorithm. A
parallel supernodal Cholesky factorization algorithm will be presented in Section 3 as

well. Section 4 provides experimental results on an IBM RS/6000, a Cray Y-MP, and

a Sequent Balance 8000. Finally, Section 5 contains a few concluding remarks and

discusses possible futnre work.

2. Background material

2.1. Notation and terminology

Assume that A is an n x n symmetric and positive definite matrix, and let L denote the

Cholesky factor of A . We use L,,j and L;,, to represent respectively the j - t h column

and i-th row of 1;. The sparsity structures of column j and row i of L (excluding the

diagonal entry) are denoted by Struct(L,,,j) a,nd Struct(Li,,), respectively. That is,

Struct(L,j) := {s > j : Zs,j # O},

Struct(L;,,) := (t < i : l; , t # Q } .

Assume that ik,j f 0 and suppose that Ek,j is not the last nonzero in column j of

L . The function n.ezt(k , j) returns the row index of the first nonzero beneath E k j in

the column L,j [15]. If l k , 3 is the last nonzero in L,,j, then we define n e z t (k , j) to be

n+ 1.

The two computational tasks occurring at each step in the Cholesky factorization

are scaling a vector and subtracting a multiple of a vector from another vector. These

two tasks will be denoted by cdiv and crnod, respectively [14].

cd iv (j) :
Ej,j c- (a . 393 .)1/2

for i = j -1- 1 to n do

end for
l i j + a i , j / J j , j

- 3 -

Finally, if M is an m x n matrix, then [MI denotes the number of nonzero elements

in M .

2.2. Sequential sparse Cholesky factorization

We begin our discussion by first reviewing a sequential general sparse Cholesky fac-

torization algorithm, details of which can be found in [16]. The algorithm is column-

oriented and is a left-looking algorithm. That is, when column L,,j is t o be computed,

the algorithm modifies column A,,j with multiples of the previous columns of L , namely

Le+, 1 5 IC 5 j - 1. Of course, sparsity will be exploited when A is sparse. We will

assume throughout that the nonzeros of A and L are stored by columns. The sequen-
tial factorization algorithm is given in Figure 2.1. This algorithm and its variations are

widely used in many sparse matrix packages, such as SPARSPAK [7].

for j = 1 to n do
for k E Str?ict(Lj,*) do

end for
cdiv(j)

cmod(j, k)

end for

Figure 2.1: A sequential sparse Cholesky factorization a.lgorithm.

Since the algorithm in Figure 2.1 is column-oriented and the nonzeros of L are stored

by columns, its implementation is quite straightforward except for the determination

of the structure of row j of L (i.e., Struct(Lj,,)). Instead of computing the structure of

every row of L prior to the factorization, the factorization algorithm itself can efficiently

generate these sets during the factorization, as shown in Figure 2.2. For each column

L, j , we maintain a set Sj of column indices, which will contain precisely the column

indices belonging to Struct(Lj,,) when the column LSr3 is computed.

After L*,j has been Computed, j is inserted into S,, where q is the row index

of the first nonzero beneath the diagonal in column j (i.e., q = nezt (j , j)) . When
the algorithm is ready to compute it will examine S, to find the columns of L
needed to modify A*,q. Among those columns it will find L*,j , and thus it will perform
cmod(q , j) as required. It is easy to see that the next column of A that L,,j will modify

- 4 -

for j = 1 to n do

end for
Sj t 0

€or j = 1 to n do
for k f Sj do

cmod(j, k)
p t n e z t (j , k)
i €p 5 n then

end if
s, +- s, " V I

end for
cdiv(j)
q +-- nez t (j , j)
if q 5 n then

end if
s, +--- s, u { j }

end for

Figure 2.2: A sequential sparse Cholesky factorization algorithm, with the generation
of row structure.

- 5 -

is given by p = nez t (q , j) . Hence, the algorithm puts j in S, for use when it later

computes L*,p. More informally, immediately after L,j has been computed it begins
“migrating” from one column of A to another as determined by the values of 7 t e z t (* , j)

(or equivalently the structure of &). The columns visited by L*,j are exactly those

that must be modified by L*,j. At any point during the factorization, Si n Sj = @j for

i # j . Consequently, the sets Sj (1 I. j 5 n) can be stored economically as linked lists

using a single integer array of length n. This is the primary reason for generating the

sets Struct(Lj,,) in this manner.

2.3. Sources of parallelism

As indicated in [15], there are two sources of potential parallelism in sparse Cholesky
factorization. The first one is in performing cmod operations with the same “updating”

column. Suppose Struct(L,,j) = {il, i 2 , . . ., i,}, with j < il < i 2 < . . . < i,. When

L * j has been computed, columns il, i z , . . ., i, of A have to be modified by L*,j. These

cmod’s are independent: they can be performed simultaneously or in any order. Thus,

if there are enough processors and if the nonzero entries of L*,j are available to these

processors, the operations crnod(il, j) , cmod(iz , j) , . . ., cmod(i,, j) can be performed

concurrently. The independence of cmod’s using the same updating column but dif-

ferent target columns has nothing to do with the sparsity of L; indeed, they are the

primary source of parallelism in a dense column-based factorization.

Sparsity in L gives rise to large-grained parallelism that is not available in a dense

factorization. Consider columns L*,k and L * j where j > k. We shall say that L,j
depends on L*,k if L,,j cannot be completed until after L*,k has been completed. When

neither L,,j depends on L l , k nor L * , k depends on L * j , the two columns are said to be

independent of one another. The column dependencies are very simple when L is

dense: since computation of L*,j requires modification of A*,j by a multiple of every

column L * , k where IC < j , L*,j depends on every such column I,*,+ To identify column

dependencies in the sparse case, we introduce elimination trees.
Consider the Cholesky factor L. For each column L*,j having off-diagonal nonzero

elements, we define parent[j] to be the row index of the first off-diagonal nonzero in

that column; that is, parent[j] = n e z t (j , j) . For convenience, we define parent[j] to

be j when column L*,j has no off-diagonal nonzeros. The elimination forest of L is a

graph 7 with {1,2, . . . ,n} as its node set, and an edge connecting i and j if and only

if j = parent[i] and i # j [21,26]. It is also easy to show that 7 is a tree if and only

if the matrix A is irreducible. Without loss of generality, we will assume from now on

that the given matrix A is irreducible, so that 7 is indeed an elimination tree. We
assume familiarity with the standard terminology associated with rooted trees: e.g.,
root, parent, child, ancestor, and descendant. We use the notation 7 [i] to denote the
subtree rooted a t node i; that is, I[i] is a tree consisting of i and all of its descendants

in T.

- 6 -

X x x x
x x x x x
x x x x x x x x

x x XX.XX
X

X
x x x

X
X

x x
x x x
x x x x x

x x x
X. x e e e x x O X

X
x x x x x
X.XX

X..X
.X..XX
.X . 0 .XX

X
X

x x x
X

X
x x x x x x x x

x x x x x x x x
x x XX.XX

X
X

x x x
X

X. .OX
X. X.0.X x x e e . . . O X x e.. 0 . . X X X e..

.OX x x 0 0
x x x . . e b e 0

x x e e e e a .

I
X X..b.bX

X
x x x

x x x x x
x x x x x x x x

x x X X b X
x . X.
x e x e x .

x .X.

x e.
x x ..
x x x .. x x ..

X
O X
.XX . .XX

0 . . X X
e x e e e e x x
o x 4 e e e e x

1 2 3 4
1 2 3 4 5 6 7 8 9 0 1 2 3 1 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Figure 2.3: A matrix example defined on a 7 x 7 nine-point grid ordered by nested
dissection. (each x and a refers t o a nonzero in A and a fill entry in I;, respectively.)

Consider the cxarnple in Figure 2.3, which contains the matrix and Cholesky factor

associated with a 7 x 7 nine-point grid ordered by the nested dissection algorithm [13].
In the figure, each x is a nonzero entry in the matrix A , and each is a fill entry in

the Cholesky factor L. The reader may verify that the tree shown in Figure 2.4 is the

elimination tree of the matrix L shown in Figure 2.3.
One of the many uses of elimination trees in sparse matrix computation is the anal-

ysis of column dependencies in sparse Cholesky factorization. (A survey of elimination

trees and their applications in sparse matrix computations is contained in [22].) A key

observation [21,26] is that Strucl(L,,,) C T[j] ; that is, every k E Struct(L,,*) is a

descendant of j in the elirnination tree. Of course, column j of L cannot be completed

until all columns in Struct(LJ,*) have been completed. Recursive application of this ob-
servation to the descendants of j demonstrates that cnliimn j of L cannot be completed

iiritjl the columns associated with all descendants of j (i.e., all members of 7 [j] - { j })

have been completed. Moreover, L,,J does not depend on any other columns. Hence,

columns i and j are independent if and only if 'I [i] and 7 [j] are disjoint subtrees. For

- 7 -

AA
Figure 2.4: Elimination tree for the matrix shown in Figure 2.3.

- 8 -

example, column 41 in Figure 2.4 depends on columns 22 -- 40, and depends on no

other columns of the matrix. Columns 41 and 21 are independent because 7[41] and

?-[all are disjoint sirbtrees.

2.4. Parallel sparse Cholesky factorization

We now describe a n algorithm for shared-memory multiprocessor systems that exploits

these two sources of parallelism. (The algorithm was introduced in [15].) The task

of computing column L,j is referred to as a column task in the computation and is

denoted by T c o l (j) . More precisely,

TcoE(j) := {cmod(j, k) 1 k E S t ~ u ~ t (L , , j) } U { c d i u (j) } .

The parallel algorithm maintains a pool of column tasks, and each processor will be

responsible for performing a subset of these column tasks. The assignment of column

tasks to processors is dynamic. When a, processor is free, it will get a column task from

the pool, perform the necessary @mod operations, and then carry out the required cdiv
operation. When the processor has finished a column task, it will get another column

task from the pool. Efficient implementation of this dynamic scheduling strategy re-

quires that the pool of tasks be made available to all processors. This is particularly

appropriate for shared-memory multiprocessor systems. This approach usually resiilts

in good load balancing, as might be expected.

The parallel algorithm in [15] is presented in Figure 2.5. A few comments on the
parallel algorithm are in order. First, note that it is quite similar t o the algorithm in

Figure 2.2. Second, we assume that the data reside in a globally-shared memory so

that every processor can access the entire set of data. Third, since every processor will

access the pool of tasks e, popping a column task from Q is a critical section and must

be performed in a synchronized manner.

Fourth, updating an index set S, requires another critical section since S, may be

simultaneously updated by more than one processor. In Figure 2.5, we have used two

primitives, lock and unlock, to synchronize this operation. The first primitive, lock,

sigiials the beginning of a critical section and allows only one processor to proceed. If
there is already a processor executing the critical section, a second processor attempting

to enter the same section must wait until the first processor has exited the section.

The second primitive, unlock, signals the end of a critical section, and its execution by

one processor permits another processor t o enter the critical section. The number of
synchronization operations required to maintain the pool of tasks is O (n) . It is easy to
see that the number of synchronization calls required to update each set "5, is O(lL+\).
Thus, the total number of synchronization calls required in the parallel algorithm is

O(lLI).

- 9 -

Global initialization:
Q + {Tcol(l) , TcoZ(2), . . . , TcoZ(n)}
for j = 1 to n do

end for
sj +- e,

Work performed by each processor:
while Q # 0 do

pop Tcol (j) from Q
while column j requires further ernod's do

if Sj = 0 then

end if
lock
obtain k from Sj
q +- next (j ,b)
if q 5 n then

end if
unlock

end while
cdiw(j)

if q 5 n then
lock

unlock

wait until Sj # 0

s, +- 4 " VI

cmod(j, I s)

Q +- ne+,j)

s, +- s, u {jl

end if
end while

Figure 2.5: A parallel sparse Cholesky factorization algorithm for shared-memory mul-
tiprocessor machines.

- 10 -

3. Supernodal Cholesky factorization algorithms

Although the results reported in [15] indicated that the parallel algorithm in Figure 2.5

achieved good speed-up ratios, the algorithms in Figures 2.2 and 2.5 are far from
optimal for a t least two important reasons. First, both the sequential and paraUel

algorithms are poor at exploiting some of the hardware features available on advanced

computer architectures, in particular, the pipelined arithmetic units on current vector

supercomputers, Second, the number of synchronization operations connected with

critical sections in the parallel algorithm is relatively high.

In this section, we discuss the notion of supernodes in the Cholesky factor of a

sparse symmetric positive definite matrix, and show how these supernodes can be used

to improve the algorithms in Figures 2.2 and 2.5. In particular, we show how both

difficulties with the algorithm in [15] can be dealt with by taking advantage of the
supernodal structure.

3.1. Notion of supernodes

In the Cholesky factor of a sparse symmetric positive definite matrix, columns with the

“same” sparsity structure are often clustered together. Such a grouping of columns is

referred to as a supernode’. We define a supernode of a sparse Cholesky factor L t o be
a contiguous block of columns in L , { p , p + 1,. . ., p + Q - l}, such that

Struct(L*,,) = Struct(L*,,+,-l) u { p 3- 1,. * . , p + Q --- 11.

It is quite easy to show that for p 5 i 5 p + Q -- 2, Struet(L,,,) = Str~c t (L , ,~+, . -1) U
{ i + 1,. . . , p + Q - l}. (For details consult [23,24]). Thiis, the columns of the supernode

{ p , p -t 1, . . . , p 3 q -.- I} have a dense diagonal block and have identical structure below

row p + q - 1. Figure 3.1 shows a set of supernodes for the matrix of Figure 2.3.

‘The partition of the columns of E into supernodes is often referred to as a supernode
part it ion.

Apparently, the term “supernode” first appeared in [5] , although the basic idea

behind the term was used much earlier. For example, the notion of supernodes has

played an important role in improving the efficiency of the minimum degree ordering

algorithm [17] and the symbolic factorization process [27]. More recently, supernodes

have been used t o organize sparse numerical factorization algorithms around matrix-

vector or matrix-matrix operations that reduce memory traffic, thereby making more

eficicnt use of vector registers [3,5] or cache [1,25]. They play such a role in both the
serial and the new parallel Cholesky factorization algorithms presented in this section.

Note that supernode partitions are not uniquely specified in our definition. Indeed,

the choices of a supernode partition depend heavily on the mazimal sets of contigiious

‘It is convenient to denote a column L*,, belonging to a supernode by its column index j . It should
be clear by context when 3 i s being used in this manner.

- 11 -

x x
. e x

e e

1
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

ii
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

x 3
0

e e x x
.XX
* * e x
* . * X X
x e e e x x

. e x * * e e x
e e X e e e e e
e e e e e e e e
eee.eeee

1 2 3 4 5 6 7 8 9 (

4 :
:X
, X
:e
:e
:e

, 5

: X
X :

e 4
* e 4
e e >

.e**>
* * e * >
e e e . 4
.*.e4

9

1
x
x x
.XX
e e x x

7 8 9 8 1 2 3 4 5 6 7 8 9 O l 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 3 4

Figure 3.1: Fundamental supernodes in the matrix given in Figure 2.3. (Each x and 0

represents a nonzero in A and a fill in L, respectively. Numbers over diagonal entries
label supernodes.)

- 12 -

columns that can be supernodes and from which one or more supernodes can be formed.
We have used so-called fundamental supernodes in our algorithms. The set K =
{ p , p + 1,. . . , p + q - l} is a fundamental supernode if K is a maximal subset of

contiguous columns that forms a supernode for which the following holds: for i = I,
2,. . ., q - 1, the node p 3- i - 1 is the sole child of p -f i in the elimination tree. The

notion of fundamental supernodes was introduced in [4] and was discussed extensively

in [23].. The fundamental supernodes for our model problem are shown in Figure 3.1.
Associated with any supernode partition is a supernodal elimination tree, which is

obtained from the elimination tree essentially by collapsing the nodes (colurnns) in

each supernode into a single n ~ d c . The supernodal elimination tree for the partition

in Figure 3.1 is shown in Figure 3.2, superimposed on the underlying elimination tree.

The primary reason for using the fundamental supernode partition in this appli-

cation was pointed out in [23]: it is the coarsest supernode partition for which the

supernode dependencies can be observed in the supernodp elimination tree in a man-

ner strictly analogous to the way the column dependencies are observed in the nodal

elimination tree. Consequently, a fundamental supernode partition can be used more
cleanly and naturally in a parallel factorization algorithm, where data dependencies

are of great practical importance. Liu et al. [23] contains a full discussion of this point.

Givcn the matrix A , the supernode partition can be obtained by several means.

When the ordering of the colurnns and rows of A is a minimum degree or nested

dissection ordering, the partition can be obtained easily as a natural by-product of
the reordering step. Otherwise, the supernode partition can be obtained directly from

the structure of L after the symbolic factorization; it can also be obtained before the

symbolic factorization using the algorithm given in [23].

3.2 Sequential super nodal C holesky factorization

In this section we describe a left-looking sequential sparse Cholesky factorization al-

gorithm that exploits the supernodal structure in L. The algorithm is not new; its
variants have appeared in 151 and [25]. Let K = { p , p + I,. . . , p + q - 1) be a supernode

in L. Consider the computation of L+,3 for some j > p + q .- 1. Suppose column A*,J
has to be modified by L*,, where i E M. It follows from the definition of supernodes

that column will be modified by aEI columns of pi. In other words, a column

j > y + q - 1 is either updated by no column of K or every column of K . This

observation has some important ramifications for the performance of sparse Cholesky

factorization. Loosely speaking, the columris in a supernode can now be treated as

a single unit in the computation. Since the columns in a supernode have the same

sparsity structure below the dense diagonal block, modification of a particular column

j > p 1- q - I by these columns can be accumulated in a work vector using dense
vector operations, and then applied t o the target column using a single sparse vector

operation that employs indirect addressing. Moreover, the use of loop unrolling in the

- 13 -

31 f
44

15

1 2 4 5 8 9 1 1 1 2

Figure 3.2: Supernodal elimination tree induced by the fundamental supernodes of the
matrix shown in Figure 2.3. Ovals enclose supernodes that contain more than one
node; nodes not enclosed by ovals are singleton supernodes. Bold-face numbers label
supernodes.

- 14 -

accumulation, as described in [9], further reduces memory traffic. These issues have

been addressed in deta.il in [1,3,5,25].
In Figure 3.3, we present a siipernodal Cholesky factorization algorithm, which

is quite similar to the orie in Figure 2.2. In Figure 2.2, Si identifies the columns of

L needed to modify A , j when L * , j is computed. Incorporating supernodes into the

algorithm, we exploit the fact that columns in the same supernode update the same

set of columns outside the supernode. 'Thus, Si will identify the supernodes needed to

modify A , j when L,j is t o be computed. In Figure 3.3, we have adopted the following

notation. Supernodes are denoted by hold capital letters, and in order to keep the

notation simple K is to be interpreted in one of two diflerent senses, depending on the

context in which it appears. In one context, X is interpreted as the set of columns

composing the supernode, i.e., K III { p , ; . + 1 , . . . , p + q - 1). In other lines of the

algorithm, the supernodes are treated as an ordered set of loop indices 1, 2, . . . , K ,
. . . , N , where K < J if and only if p < p', where p and p' are the first columns

of K and J , respectively. This dual-purpose notation is illustrated in Figure 3.1,
where the supernode labels are written over the diagonal entries, yet we can still write

30 = {40,41,42}, for example. We denote both the last supernode and the number of

supernodes by N .
SupposeK { p , p + l , ..., p + q - I } . Wheneverj > p + q - 1 andZj,p+q-l # 0, the

task cmod(j , K) consists of the operations crnod(j , k) where k = p , p + 1, . . . , p + q - 1.
If, however, j E K , then c m o d (j , K) consists of the operations c m o d (j , k) , for k =
p , p + 1,. . . , j - 1. Suppose L+,e is the last column in a supernode K and let Ij ,e # 0.
Then nez t (j ,K) i s defined to be nez t (j , l) . Similarly, we define nez t (K ,K) to be

next(& e).
To reiterate the advantage of exploiting the supernodal structure of L , we note that

the operation cmod(j , K) for j M can be accumulated in work storage by a sequence

of dense vector operations (saxpy using the BLAS terminology [19]), a,fter which the

accumulated column modifications can be applied to the target column L,,j using a

single column operation that requires indirect addressing. Execution of the operation

cmod(j , S) for j E J is even easier, requiring no work storage or indirect addressing. In

both cases, loop unrolling can be employed to reduce memory traffic, thereby iniprov-

ing the utilization of pipelined arithmetic units, especially on vector supercomputers.

These capabilities are not available in the "nodal" Cholesky factorization algorithm in
Figure 2.2.

3.3. Parallel supernodal C h ~ l e s k y factorization

As far as we know, the first attempt to parallelize a supernodal Cholesky factorization

algorithm was described in [as]. Using the notation in Figure 3.3, the basic idea in
[28] is to partition the work in cmod(j , M) and cmod(j , J) evenly among the available

processors. This approach is similar to that employed in the LAPACK project [2],

- 1 5 -

for j = 1 to N do

end for
Sj + 0

for J = 1 to N do
for j E J (in order) do

for K E Sj do
cmod(j, K)
q +- nezt(j ,K)
if q _< n then

end if
s, +- s, u W I

end for

cd iv (j)
end for
q +- nest (J , J)
if Q 5 a then

end if

cmod(j, J)

s, +- 8, u { J l

end for

Figure 3.3: A sequential supernodd Cholesky factorization algorithm.

- 16 -

where, in the interest of software portability and reliability, use of miiltiple processors

occurs strictly within each call to some computationally intensive variant of a matrix-

matrix multiply (BLAS3) or matrix-vector multiply (BLAS2) kernel subroutine. Hence
each call to the kernel involves a fork-and-join operation. For large dense matrices,

where the vectors are quite long and each call t o the kernel routine typically involves

a substantial amount of work, this approach is quite effective [SI. For sparse matrices,

however, short vectors and a limited amount of work within a typical call t o the kernel

routine make it quite difficult to implement this approach in an effective manner.

The performance of the code in [28] apparently suffers from these defects, and the

stripmining technique used to distribute the tasks cmod(j, K) and cmod(j , J) among

the processors greatly shortens the vector lengths, which is quite detrimental on the

target machine, a Cray Y-MP multiprocessor.

In this section, we describe a different way t o parallelize the supernodal Cholesky

factorization algorithm in Figure 3.3. Our parallel version, shown in Figure 3.4, exploits

far more of the potential parallelism than the technique used in [28].

A few comments on the algorithm in Figure 3.4 are in order. First, note that a

supernode J is inserted into S,, where q = n e z t (J , J) , only after the last column of

J has been completed. Thus, when a processor working on column q obtains J from

S,, alk columns of the supernode J are available for updating column q of A . This

is potentially inefficient, as the columns of J are not made available t o update other

columns of A as soon as they have been completed. An alternative t o this approach is

to insert J into S, as soon as the first column of the supernode has been completed.

Of course, when a processor working on column q obtains J from S,, not all columns

of J are necessarily available. Some flags must be maintained so that the processor can

determine which columns of J have been completed. This approach attempts t o make

every column of L available t o update other columns as soon as it has been completed.

We have implemented both approaches. Preliminary tests indicate that the dityerence

in performance for these two approaches is extremely smaU. We have chosen to use the

approach shown in Figure 3.4 becaiise it is much simpler to describe and it simplifies

our implementation, especially the incorporation of loop unrolling into the code.

Another remark concerns the crnod(j, K) operations. As in the sequential case,

since all the columns in K share the same sparsity structure below the diagonal entry of
the last member of Ea‘, these operations can be accumulated in work storage using dense

vector operations. Extra care is required however when performing the c m o d (j , J)
operation. Since somc of the columns j’ < j belonging to J may not be completed, a
flag has to be associated with each column to record the column’s current status. The

flag for a particular column is set immediately after the column has been completed.
Since the flag for a particular column is set only by the processor that computes the
column, synchronization is not needed.

The number of lock and unlock synchronization operations required in the parallel

supernodal Cholesky factorization algorithm is often much smaller than that required

- 1 7 -

Global initialization:
Q +-- {Tcol (l) , Tcol(2), . . . , TcoZ(n)}
for j = 1 to N do

end for
Sj + 0

Work performed by each processor:
while Q # 0 do

pop Tcol (j) from Q
let J be the supernode containing column j
while column j requires further cmod's do

if Sj = 0 then

end if
lock
obtain K from Sj
q + n e z t (j , K)
if q 5 n then

end if
unlock
cmod(j, K)

end while

cdiv(j)
if j is the last column of supernode J then

wait until Sj # 0

s, s, u {W

cmod(j, J)

q +- n e z t (J , J)
if q 5 n then

lock

unlock
S, +- s, " { J 3

end if
end if

end while

Figure 3.4: A p a r d e l supernodal Cholesky factorization algorithm for shared-memory
multiprocessor machines.

- 18 -

in the nodal version, as the following discussion shows. One of the key features in

Figures 3.3 and 3.4 is that each set S, contains supemodes, rather than columns as it

did in Figures 2.2 and 2.5. It is easy t o see in Figure 3.3 that each supernode J has to be

inserted into O(lL.,el) sets, where I,*,! is the last column of J . Consequently, the total

number of synchronizations required in Figure 3.4 depends on the number of compressed
subscripts [27], which is basically the number of nonzero entries in the last columns of

all supernodes. To illustrate the reduction in the amount of synchronization, consider a

model m x m grid problem using pither a !%point or a 9-point operator. Suppose the grid

points are labelled using the nested dissection algorithm [13]. It is easy t o show that the

number of nonzeros in L is O(m2 log m) [13] and the number of cornpressed siibscripts

is O (m 2) [27]. Thus, the amount of synchronization in the parallel supernodal Cholesky
factorization is reduced by a factor of log m. Experimental results in the next section

show the reductions in a collection of test problems.

3.4. Scheduling column tasks

Our discussion thus far has ignored an iniportant issue: the scheduling of the column

tasks TcoZ(j) on the available processors. While we have found this issue to be less

important on shared-memory machines than it is on distributed-memory machines,

it nonetheless deserves some attention, and i s likely to be of more consequence as

shared-memory machines with substailtially more processors become available in the

future. Again, the column-dependency information contained in the elimination tree is

indispensable in dealing with this problem.

We use the following simple technique to schedule the column tasks. Before the

factorization begins, all columns are placed into the column task pool in the order in
which they will be selected from the pool. Thus, the pool of tasks can be viewed as a

static queue. -4 scheduling, then, is essentially the order in which the column tasks are

placed in the static queue.

'The goal of the heuristic we use t o order the column tasks in the queue is t o exploit

as much as possible the high-level parallelism available for sets of independent columns.

Recall that l 'col(i) and T c o l (j) are independent column tasks if i and j belong to two
disjoint subtrees in the elimination tree. Consider the example in Figure 2.4. Columns

associated with the leaves of the elimination tree (1, 2, 4, 5, 10, 11, 13, 14, 22, 23, 2.5,

26, 31, 32, 34 and 35) are independent, since they belong to disjoint subtrees. If there

are enough processors available, the corresponding column tasks can be performed in

parallel with no delays due lo data-dependencies. Similarly, columns 9, 18, 30 and 39
are independent. Thus, TcoZ(S), ?'co6(18), Tcol(30) and l'col(39) can be carried out

concurrently if the column tasks associated with the subtrees '1-[8], 7[17], 7[29] and

T[38] have already been completed. 'l'he elimination tree therefore provides a natural

way t o schedule the column tasks. The order in which the column tasks are placed in

the work pool Q is generated by a, breadth-first, bottorn-up traversal of a post-ordered

- 19 -

version of the elimination tree. The same strategy was used in [15].

4. Numerical experiments

4.1. Test problems

problem
BCSSTK13
BCSSTK14
BCSSTK15
BCSSTK16
BCSSTK17
BCSSTK18
BCSSTK23
BCSSTK24
BCSSTK25
BCSSTK29
BCSSTKSO
BCSSTK3 1

BCSSTK32
BCSSTK33
NASA1824
NASA2910
NASA4704
NASASRB

brief description
Stiffness matrix - fluid flow generalized eigenvalues
Stiffness matrix - roof of Omni Coliseum, Atlanta
Stiffness matrix -- module of an offshore platform
Stiffness matrix - Corp. of Engineers dam
Stiffness matrix - elevated pressure vessel
Stiffness matrix -- R.E.Ginna nuclear power station
Stiffness matrix - portion of a 3D globally triangular bldg

Stiffness matrix - winter sports arena
Stiffness matrix - 76 story skyscraper
Stiffness matrix - buckling model of the 767 rear bulkhead
Stiffness matrix - off-shore generator platform (MSC NASTRAN)
Stiffness matrix - automobile component (MSC NASTRAN)

Stiffness matrix - automobile chassis (MSC NASTRAN)
Stiffness matrix - pin boss (auto steering component), solid elements

Structure from NASA Langley, 1824 degrees of freedom
Structure from NASA Langley, 2910 degrees of freedom
Structure from NASA Langley, 4704 degrees of freedom
Structure from NASA Langley, shuttle rocket booster

Table 4.1: List of test problems.

Most of the test problems used in our numerical experiments were taken from the

Harwell-Boeing ‘Yest Collection [ll]. A brief description of the problems is given in

Table 4.1. Tn the experiments, each matrix was initially ordered using an implemen-

tation of the minimum degree algorithm due to Liu [20], followed by a postordering

of the elimination tree [22]. The reason for postordering the elimination tree is that

the algorithms in [23] were used to compute the fundamental supernodes and the sym-

bolic factorization, and they require such a postordering. Some statistics, such as thc

size of each matrix, nonzero counts for both A and I,, number of subscripts required

to represent the supernodal structure of L (denoted by pL(L)), the numbcr of funda-

mental supernodes in L , and tlie number of floating-point operations’ are provided in

Table 4.2.

2A single floating-point operation is either a floating-point addition or a floating-point multiplicatim,
and is denoted by “flop”.

- 20 -

yn-oblcm
U C S S T K ~ ~

...

RCSSTX1.1
BCSSTK15
RCSS'rK16
RCSS'I K17
BCSSTK 18
R C: SS'l'K2 3
BCSSTK24
BCSS rK25
I? cs ST K29
RCSSTK30
BCSSTK31
RCS ST K 32
BCSSTM33
NASA 1824
NASA'LY 10
NASA4704
NASASRS _________ __

~ -
n

2,003
1,806

4,884
10,974
11,948
3,134
3,552

15,439
13,992
28,974
35,588
44,609
8,738
1,824
2,910
4,704

54,870

3,948

__

____--_I_ -.
1~41 s_____-....

83,885
63,454

117,816
290,378
428,650
149,090
45,178

159,910
252,241
619,488

2,041,/192
1,181,416
2,014,701

591,904
39,208

174,296
104,'156

2,6 7 7,324
-.

I_I-

ILI _____--
271,671
112,267
651,222
741,1T8

1,005,859
662,325
420,311
278,922

1,416,568
1,694,796
3,843,435
5,308,217
5,246,353
2,546,802

73,699
204,403
281,472

11,984,998 - . .___ ___

-.
P (L)

28,621
17,508
61,614
50,365
94,225

116,807
49,018
22,331

205,5 13
174,770
229,670
330,896
374,507
124,532
12,587
25,170
35,339

592,254
~

____I

N
599
503

1,295
69 1

2,595
7,438
1,522

4 14
7,288
3,231
3,689
8,304
6,927
1,201

527
599

1,245
8,027

_____--..__ ___
f l o p -

58,550,598
9,793,431

165,035,094
119,100,948
144,269,031
140,907,823
119,155,247
32,429,194

283,732,315
393,045,158
928,323,809

2,550,954,465
1,108,686,016
1,203,491,786

5,160,949
21,068,943
35,003,786

4,672,895,526

Table 4.2: Characteristics of test problems.

Legend:

n: number of equations.

[AI: number of norrzeros in A ,

I f , / : number of ~ O A Z ~ ~ O S in L . including the diagonal,

p (L) : number of row subscripts rquired to represent the supernodal structure of L ,

N : number of funtlamental supernodes in L ,

flops: number of floating-point operations required to compute L .

.... ____ ~ .____

- 21 -

!=I
7.39
1.33

18.59
14.88
4.10
.74

2.83
4.53

Throughout this section, we use c o l f c t to refer to the column-based approach to
Cholesky factorization used in Figures 2.2 and 2.5. Likewise, we use s u p f c t to refer

to supernode-based approach used in Figures 3.3 and 3.4. For each approach there

are two distinct but similar routines: a serial routine and a parallel routine. Thus,

there are four routines, each implementing one of the algorithms found in Figures 2.2,
2.5, 3.3, and 3.4. It is worth noting that the serial c o l f c t routine is a version of
SPARSPAK’s gsf c t routine that has been slightly modified for fair comparison with

the other routines, which were written from scratch.

1=2 1=4 e=8
5.98 5.45 5.23
1.07 1.02 1.00

15.17 13.93 13.60
11.94 10.74 10.52
3.27 3.02 2.95

.62 .59 .58
2.32 2.13 2.13
3.71 3.42 3.37

4.2. Numerical results on an IBM RS/SOOO

The primary purpose of Table 4.3 is to show the impact on performance of various levels

of loop unrolling in the supf c t routines. The kernel subroutine called by both the serial

and parallel supf c t routines is capable of unrolling the outer loop of a column-oriented

matrix-vector multiply, as in [9]. (The loop unrolling performs multiple saxpy’s in

a single loop.) Such loop unrolling cannot be introduced into the co1fc.t routines

because they are not cognizant of the supernode structure on which the technique

depends. Loop unrolling levels = 1, 2, 4, and 8 have been tried on several machines.

problem
BCSSTK13
BCSSTK14
BCSSTK18
B C SS’T K2 3
BCSSTK24
NASA1824
NASA29 10
N ASA4704

colf c t
9.86
1.74

24.02
19.91
5.59

.94
3.68
6.09

Table 4.3: Factorization times in seconds for various levels of loop-unrolling on an IDM
RS/6000 (model 320).

Table 4.3 records the results of these tests on an TBM RS/6OOO workstation (model

320). Our double precision Fortran code was compiled using the IBM Fortran compiler

xlf with optimization turned on (i.e., x l f -0). The results for some of the smaller

problems in our test set are reported in Table 4.3.
The first thing to note is that s u p f c t with no loop unrolling (t=l) is significantly

faster than c o l f c t . We believe the improvement is due to better use of the cache by
s u p f c t , which is due, in turn, to the reduction in indirect addressing and increased

locality of the data references obtained via supernodes and careful attention to cer-
tain implementation details. On other machines we have tried, supf c t with no loop

unrolling generally runs no faster than colf c t , and quite often runs slightly slower.

The improvements due to loop unrolling shown in Figure 4.3 are fairly typical of

- 22 -

what we have observed on other machines, too. While the benefits of loop unrolling

levels higher than l i d are minimal on the IBM RS/6000, the point of diminishing

returns is usually higher on other machines. Experience has shown l=8 t o be a good
overall choice for the machines we have worked with. In all subsequent experiments,

sequential and parallel s u p f c t use loop unrolling to level l=8 .

4.3. Nuinerkal results on a Sequent Babncse 8000

Next, we compare the performance of parallel colfct with that of parallel si ipfct on

a Sequent Balance 8000, a shared-memory multiprocessor with 12 processors and 16
Mbytes of memory. The parallel routines used Sequent Fortran compiler directives t o

access the parallel capabilities of the machine and to perform the necessary synchro-

nization operations. The Sequent's Fortran preprocessor transformed these compiler

directives into appropriate Fortran code, which, in turn, issued the required system

subroutine calls. The Fortran source code was compiled using the Fortran compiler

f o r t r an with the optimization and preprocessing options turned on (i.e., f o r t r a n

-a4 -mp).
Table 4.4 contains factorization times and speed-up ratios (enclosed in parentheses)

for runs on some of the smaller problems in our tcst set. Since we are interested

primarily in comparing the ability of ralfct and siipfct to exploit multiple processors,

each speed-up ratio is formed by dividing the time required for a parallel rim into the

time required for a serial run of the same method. Note that the serial time is quite

distinct from the tirue required by the parallel algorithm on a single processor, which

is always greater.
....... ___...... ~

~

problem
BCSSTK13

BCSSTK14

BCSS'TK18

BCSSTK23

BCSSTK24

NASA1824

NASA2910

NASA4704

_.
I

method
1 c o l f c t

supf c t
c o l f c t

I supfc t
c o l f c t
supfc t
c o l f c t
sup fc t
co l f c t
supfc t
co l f c t

i supfc t
c o l f c t
supfc t
CoPfct
slipfct ____.

serial
1147.2
874.4
195.2
155.4

2790.9
2144.4
2328.8
1755.1
640.3
493.9
104.9
84.8

417.0
330.0
691.9
539.4

__I

p:-l

1299.4 (0.88)
878.3 (1.00)
225.6 (0.87)
157.5 (0.99)

3152.3 (0.89)
2179.3 (0.98)
2627.9 (0.89)
1776.8 (0.99)
733.8 (0.87)
500.4 (0.99)
122.4 (0.86)
86.8 (0.98)

482.7 (0.86)
337.0 (0.98)
791.8 (0.87)
542.5 10.991

__ p=2
652.2 (1.8)
440.3 (2.0)
114.2 (1.7)

79.6 (2.0)
1589.7 (1.8)
1097.9 (2.0)
1322.5 (1.8)
893.1 (2.0)
371.6 (1.7)
250.6 (2.0)
62.0 (1.7)

242.5 (1.7)
167.6 (2.0)
401.3 (1.7)
274.6 (2.0)

43.9 (1.9)

__-

parallel
p=4

333.7 (3.4)
225.9 (3.9)

58.7 (3.3)
40.4 (3.8)

556.7 (3.9)
670.2 (3.5)

188.8 (3.4)
126.8 (3.9)
32.0 (3.3)
22.4 (3.8)

124.1 (3.4)
85.5 (3.9)

204.2 (3.4)
138.7 (3.9)

810.0 (3.4)

447.5 (3.9)

.......
p=7

195.6 (5.9)
132.0 (6.6)
34.8 (5.6)
23.4 (6.6)

477.3 (5.8)
326.2 (6.6)
387.0 (6.0)
259.1 (6.8)
110.7 (5.8)
73.1 (6.8)
19.4 (5.4)
13.2 (6.4)
73.2 (5.7)
49.5 (6.7)

119.8 (5.8)
80.2 (6.7)-

I_____...--
p = : l O

93.7 (9.3)
140.7 (8.2)

25.5 (7.7)
16.8 (9.3)

346.3 (8.1)
234.8 (9.1)
275.1 (8.5)
182.6 (9.6)
80.2 (8.0)
52.1 (9.5)
14.7 (7.1)
9.6 (8.8)

53.3 (7.8)
35.2 (9.4)
86.6 (8.0)
57.0 (9.5)

'Iahle 4.4: Factorization times in seconds (and speed-ups) on a Sequent Balance 8000.

Comparing the factorization times for the two methods in the last column (~ ~ 1 0)

clearly indicates the superiority of aupfct over ccslfct. Indeed the differences in their

perferrnance on these problems are large and remarkably consistent, ranging from a

- 23 -

low of 47.5%’03 to a high of 57.8%. Two observations largely account for the superior

performance of supfct . First, the loop unrolling discussed in the previous section is

quite valuable on the Sequent also. The effects of loop unrolling are apparent in the

serial runs, and they are quite consistent among the problems, with improvements in

performance ranging from a low of 23.7% to a high of 32.7%, The benefits of loop

unrolling are largely preserved in the parallel implementation of supf ct.

Second, supf ct’s speed-up ratios are consistently better than colf ct’s; for colf c t

they range from 7.1 to 8.5, and for supfct they range from 8.8 to 9.6. The “speed-up”

ratios for parallel runs on a single processor (p=1) suggest that one of the primary rea-

sons for colf ct’s inferior speed-up ratios is the high synchronization overhead incurred

by the method. Since there is no contention for access t o the critical sections of the

code when the parallel codes are run on a single processor, it is likely that the relative

difference in synchronization overhead costs is significantly greater on 10 processors.

The speed-ups for colf c t on 10 processors are nonetheless quite respectable (7.1-8.5).

4.4. Numerical results on a Cray Y-MP

Finally, we compare parallel colf c t and parallel supf c t on a Cray Y-MP, a powerful

vector supercomputer with 8 processors and 128 Mwords of memory. The code run
on this machine was the same code run on the Sequent, with a few minor changes re-

quired to take care of machine-dependent constructs for exploiting parallelism. Again,

the loop unrolling level used by supf c t was l=8, and Fortran compiler directives were

used to exercise the machine’s parallel capabilities and to perform the necessary syn-

chronization operations. The code was compiled using the Fortran compiler cf 77 with

optimization (the default) and preprocessing options on. (i.e., cf 77 -2u).
The top half of Table 4.5 reports factorization times and speed-up ratios (enclosed

in parentheses) for both methods applied to some small problems in our test set. The

bottom half of the table records performance data for supfct on the remaining proh-

lems in our test set.
Not surprisingly, supf c t performs much better than colf c t on this machine. Loop

unrolling is more effective on the Cray Y-MP than it is on the Sequent. Comparing

the serial runs for the two methods, we find differences in performance ranging from a
low of 53% to a high of 132%, due to loop unrolling and reduced indirect indexing in

supf ct. Similar results have been reported previously in [5]. We also find that supf c t
parallelizes much better than co l f c t . For example, on eight processors (y=8) the

speed-up ratios for supfct range from a low of 6.0 to a high of 6.9, which is quite good,

especially on such small problems. The speed-up ratios for co l f c t , however, are very

poor, ranging from a low of 2.0 to a high of 3.7. As was the case on the Sequent, the

“speed-ups” obtained on a single processor indicate that the high synchronization costs

3The base for each percentage is the smaller of the two times. This applies to percentages presented
later in this section as well.

- 24 -

problem-
BCSSTKl3

BCSSTK14

RCSSTKl5

BGSSTK16

BCSS'TK17

BCSSTKl8

BCSSTIC23

BCSSTK24

........ - _
parallel ...______ II

method serial p= 1
c o l f c t ,929 1.347 (.Si).
supf c t .439 ,493 (.89)
c o l f c t .238 ,391 (.61)
s u p f c t .156 .185 (.84)
c o l f c t 2.485 3.471 (.72)
snpfct 1.071 1.172 (.91)
c n l f c t 2.444 3.549 (.69)
supfct 1.067 1.178 (.91)
c o l f c t 2.712 4.121 (.66)
s u p f c t 1.373 1.540 (.89)
c o l f c t 2.288 3.284 (.70)
s u p f c t 1.314 1.481 (.89)
c o l f c t 1.755 2.408 (.73)
s u p f c t ,798 .879 (.91)
colf c t ,674 1.071 (.63)

.338 1 ,381 (mj
.-

s1apfct
BCSS'rK25 11 s u p f c t / / 2.580 2.872-(:60T

.331 (237)

p=2
,685 (1.4)
.249 (1.8)
.203 (1.2)
.093 (1.7)

1.770 (1.4)
.594 (1.8)

1.814 (1.3)
.590 (1.8)

2.142 (1.3)
.773 (1.8)

1.675 (1.4)
,741 (1.8)

1.219 (1.4)
.441 (1.8)
.551 (1.2)
.190 (1.8)

1.602 (1.8)
3.154 (1.8)
6.653 (1.9)
4.249 (1.8)
3.074 (1.9)

,069 (1.7)
.166 (1.7)
,243 (1.8)

12.404 (1.9)

Tzqiq

p=4
.379 (2.5)
.128 (3.4)
.126 (1.9)
.048 (3.2)
.962 (2.6)
.299 (3.6)
,995 (2.5)
,299 (3.6)

1.223 (2.2)
.392 (3.5)
.928 (2.5)
.382 (3.4)
.652 (2.7)
.224 (3.6)
.329 (2.0)
.096 (3.5)
.731 (3.5)
,810 (3.6)

1.590 (3.7)
3.330 (3.8)
2.134 (3.6)
1.539 (3.8)

,036 (3.2)

.124 (3.5)
6.202 (3.8)

.os4 (3.4)

p=6
.314 (3.0)
.089 (4.9)

.033 (4.7)

.768 (3.2)

.204 (5.2)

.834 (2.9)

1.104 (2.5)
.267 (5.1)
.767 (3.0)
.265 (5.0)
.514 (3.4)
.153 (5.2)
.302 (2.2)

____...-_ .065 (5.2)
.504 (5.1)

1.073 (5.4)
2.249 (5.6)
1.442 (5.4)
1.040 (5.6)

.025 (4.6)
,058 (4.9)
.085 (5.0)

4.179 (5.6)

....

.121 (2.0)

.202 (5.3)

.547 (5.4)

p=8
.301 (3.1)
,069 (6.4)

.026 (6.0)

.725 (3.4)

.157 (6.8)

.812 (3.0)
,154 (6.9)

1.094 (2.5)
,206 (6.7)
,729 (3.1)
,213 (6.2)

.125 (6.4)

.301 (2.2)

.050 (6.8)

.394 (6.5)

.421 (7.0)
,815 (7.1)

1.706 (7.4)
1.100 (7.1)
.788 (7.4)
,019 (6.0)
.045 (6.4)
,065 (6.6)

3.164 (7.4)

.121 (2.0)

,473 (3.7)

Table 4.5: Factorization times in seconds (and speed-ups) on a Cray Y-MP.

incurred by calfct seriously degrade its parallel performance. Indeed, OD this machine

the overhead appears t o he considerably higher than it was on the Sequent. This high

overhead combined with the fast floating-point computational rates on this machine,

probably account for most of the degradation in parallel performance of c o l f c t .

The performance of s u p f c t on the large problems in the bottom half of the table

is consistently good. Tgnoring the three smallest problems in this portion of the table

(NASA1824, NASA2910, and NASA4704), speed-up ratios range from a low of 6.5 to a

high of 7.4. Qn six out of seven of these problems the speed-up ratio is 7.0 or greater,

wilh the 6.5 speed-up ratio reserved for the problem requiring the least work, namely

BCSSTK25.
'Table 4.6 conipares the performance of supf ct with the parallel supernodal factor-

ization algorithm used in [28], which we will designate as supfct-SWY. The performance

figures are expressed ir l hfAops4, as is commonly done for vector supercomputers such

as the Cray Y-MP. We report the performance of both codes on those problems in our

test set for which results for supfct-SVY were available t o us. 'The performance data
for supfct-SVY were obtained from an unpublished manuscript [as] .

Consider the results obtained on 8 processors (p:8). On six of the twelve prob-

' Mflops (megaflops) are millions of floating-point operations per second. Gflops (gigaflops) are
billions of floating-point operations per second.

- 25 -

method
supf ct
supf ct-SVY
supf c t
supf ct-SVY
supf C t

supfct-SVY
supf ct
supf ct-SVY
supf c t
supf ct-SVY
supf c t
supf ct-SVY
supf c t
supf ct-SVY
supf ct
supf ct-SVY
supf c t
supf ct-SVY
supf c t
supf ct-SVY
supf c t
supfct-SVY
supf ct
supf ct-SVY

problem
BCSSTK15

BCSSTK16

BCSSTK23

BCSSTK24

BCSSTK30

BCSSTK31

BCSSTK32

BCSSTK33

NASA1824

NASA2920

NASA4704

NASASRB

serial
154.1
197.8
139.7
190.8
149.3
191.6
95.9

139.4
159.6
212.2
202.3
251.4
142.6
193.5
206.4
258.4
45.3
64.3
73.4
97.5
81.6

117.0
198.3
250.6

Pa
p=4
551.9
301.1
498.6
287.5
531.9
293.3
337.8
168.2
583.8
350.0
766.0
566.3
519.5
29 1.4
782.0
593.1
143.3
69.8

250.8
121.6
282.3
143.5
753.4
531.6

del
p=8

1051.2
320.8
968.2
297.4
953.2
315.1
648.5
168.7

1139.0
375.0

1495.3
689.2

1007.9
307.0

1527.3
717.2
271.5
69.8

468.1
121.4
538.4
143.5

1476.9
625.2

Table 4.6: Factorization computational rates (Mflops) on a Cray Y-MP.

- 26 -

lems, supf ct performs the factorization at over a Gflop, with highs of 1.48 Gflops on

NASASRB, 1.50 Gflops on SCSSTK31, and 1.53 Gflops on BCSSTK33. For two oth-

ers problems, the computational rake is nearly a Gflop: .97 Gflop on RCSSTKIG and

.95 Gflop on BCSSTX23. Thus, for 8 out of 12 of the problems, supfct computed

the factorization a t nearly a GAop or more. Table 4.2 indicates that the remaining

four problems (NASA182.1, NASA2910, NASA4704, and BCSSTIC24) are quite small.

Moreover, in Table 4.5 we see that serial supfct requires less than half a second to

factor any of these matrices.

The performance of supfct-SVY is much poorer due to the problems with this

ayproa,ch mentioned earlier in Section 3.3. The code runs a t less than a Gflop on

every problem, despite having significantly higher serial efficiency due to assembly

language programming of the compute-intensive kernel routines and other machine-

specific optimizations. Our parallel implementation of supf c t is a Fortran 77 code,

with no machine-specific optimizations.

5 . Concluding remarks

We have implemented a new parallel sparse Cholesky factorization algorithm for shared-

memory multiprocessors. This new left-looking algorithm uses techniques from [5] and

[15]: it uses supernodes to reduce indirect addressing and memory traffic [5], and
it decomposes the computation into column tasks Tcol (j) and schedules these tasks

dynamically on the available ~ T ~ C ~ S S Q I - S [1,5]. Incorporation of supernodes into the

algorithm in (151 reduces the synchronization overhead required to manage the row

structure sets S, from O(lL1) to O (p (L)) , where p (L) is the number of row subscripts

required to represent the supernodal structure of L. in practice, p(L> is often much

smaller than [Ll ; consequently, contention for the critical sections i s likely t o be much

higher in c o l f c t than in supfc t . Since the algorithms use a single lack variable for

the critical sections, the sections are executed serially. Thus, the serial component of

s u p f c t is in practice much smaller than that of c o l f c t . Our tests indicate that this is

the single most important factor contributing t o the new algorithm’s superior parallel

performance.

Right-looking sparse Cholesky algorithms (i.e., multifrontal algorithms) for shared-

memory multiprocessors have appeared in [6,10,29]. These algorithms exploit supern-

odes in much the same way that the new parallel left-looking algorithm does. Par-

allelizing the multifrontal algorithm however is considerably more complicated than

parallelizing the simpler left-looking algorithms. For instance, parallel multifrontal

Cholesky for shared-memory machines can no longer use a simple and efficient stack to

manage the “update” matrices required by the method. Methods for dealing with this

fragmented component of work storage are necessarily more complicated and storage
illefficient [10,29]. On the other hand, supfc t requires only a modest amount of work

storage, which can be determined before the numerical factorization begins. Break-

- 27 -

ing multifrontd Cholesky factorization into tasks and scheduling these tasks on the

available processors is also more complicated than it is for the left-looking algorithms.

The additional complexity has lead to parameterized implementations, where the per-

formance of the code is quite sensitive to parameter selection (see [lo] and especially

There are however significant advantages enjoyed by the multifront a1 method; e.g.,

it is a superior out-of-core method and is better able to improve performance by loading

and reusing data in cache. It appears to us that the rnultifrontal method very likely will

always be the method of choice for out-of-core sparse Cholesky factorization. However,

we think that a block-to-block left-looking algorithm may be quite competitive with the

multifrontal method at exploiting cache to improve performance. Such an algorithm

would be built around a crnod(J, K) operation that updates the appropriate subset of
columns from supernode J with all the columns of the updating supernode K . With

the rising importance of cache memory on recent supercomputers and workstations,

exploring this approach on current serial and parallel machines is a promising area for

fut w e work.

1291 1.

6. References

[l] P.R. Amestoy and I.S. Duff. Vectorization of a multiprocessor multifrontal code.

Internat. J. Supercomp. Appl., 341-59, 1989.

[2] E. Anderson, 2. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Green-

baum, s. Hammarling, A. McKenney, and D. Sorensen. LAPACK: A portable

linear algebra library for high-performance computers. In Proceedings of Super-
computing '$0, pages 1-10. IEEE Press, 1990.

[3] C. Ashcraft. A vector implementation of the multifrontal method for large sparse,

symmetric positive definite linear systems. Technical Report ETA-TR-51, En-

gineering Technology Applications Division, Boeing Computer Services, Seattle,

Washington, 1987.

[4] C. Ashcraft and R. Grimes. The influence of relaxed supernode partitions on the

multifrontal method. A C M Trans. Muth. Softwure, 15:291-309, 1989.

[5] C.C. Ashcraft, R.G. Grimes, J.G. Lewis, B.W. Peyton, and H.D. Simon. Progress

in sparse matrix methods for large linear systems on vector supercomputers. IYZ-
ternat. J . Supercomp. Appl, 1:lO-30, 1987.

[6] R.E. Benner, G.R. Montry, and G.G. Weigand. Concurrent multifrontal methods:
shared memory, cache, and frontwidth issues. Internat. J . Supexontp. Appl, 1:26-
44, 1987.

- 28 -

[7] E.C.11. Chu, A. George, J. W-H. Liu, and E. G-Y. Ng. User’s guide for

SPA4RSPAK-A: Waterloo sparse linear equations package. Technical Report CS-

84-36, University of Waterloo, Waterloo, Qntario, 1984.

[8] J.J. Dongarra, I.S. Duff, J . Du Croz, and S. IIammarling. A set of level 3 basic

linear algebra subprograms. ACM Trans, Math. Sojlware, 16:l-17, 1990.

[9] J.J. Dongarra and S.C. Eisenstat. Squeezing the most out of an algorithm in Cray

Fortran. ACM Trans. Math. Software, 10:219-230, 1984.

[lo] I.S. Duff. Multiprocessing a sparse matrix code on the Alliant FX/8. J . Cornput.
Appl. Math., 27:229-239, 1989.

[ll] I.S. Duff, R.G. Grimes, and J.G. Lewis. Sparse matrix test problems. ACM Trans.
Math. L70f tWU9P, 15:1-14, 1989.

[12] I.S. Duff and J.K. Reid. The multifronta,l solution of indefinite sparse symmetric

linear equations. A C M Trans. Math. Software, 9:302-325, 1983.

[13] A. George. Nested dissection of a regular finite element mesh. SIAM J . Nurner.
A n d . , 10:345-363, 19’73.

[14] A. George, M.T. Heath, and J. W-II. Liu. Parallel Cholesky factorization on a

shared-memory multiprocessor. Linear Alg. Appl . , 77:165-187, 1986.

[15] A. George, M.T. Heath, J. W-ll. Liu, and E. G-Y. Ng. Solution of sparse pos-

itive definite systems on a shared memory multiprocessor. Internat. J . Parallel
Programjming, 15:309-325, 1986.

[16] A. George and J. W-11. Liu. Computer. Solirtion of Large Sparse Positive Definite
Systems, Prentice-Hall Inc., Englewood Cliffsfs? New Jersey, 1981.

I171 A. George and D.R. McIntyre. On the application of the minimum degree algo-

rithm to finite element systems. SIAM J . Nurner. A n d . , 15:90-111, 1978.

[IS] M.T. Heath, E. Ng, and B.W. Peyton. Pa.ra.lle1 algorithms for sparse linear sys-

tems. SIAM Review, 1991. (To appear).

[19] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic linear algebra subpro-

g r a m for Fortran usage. ACM Trans. Math. Software, 5:308-371, 1979.

[20] J. W-H. Liu. Modification of the minimum degree algorithm by multiple elimina-

tion. A C M Trans. &lath. Software, 11:141 153, 1985.

[all 9. W-€I. Liu. A compact row storage scheme for Cholesky factors using elimination

trees. A C M Trans. Math. Software, 12~127 148, 1986.

- 29 -

[22] J. W-H. Liu. The role of elimination trees in sparse factorization. SIAN J . Matriz
Anal. A@., 11~134-172,1990.

[23] J.W.H. Liu, E. Ng, and B.W. Peyton. On finding supernodes for sparse matrix

computations. Technical Report ORNL/TM-11563, Oak Ridge National Labora-

tory, Oak Ridge, T N , 1990.

[24] A. Pothen. Simplicial cliques, shortest elimination trees, and supernodes in sparse

Cholesky factorization. Technical Report CS-88-13, Department of Computer Sci-

ence, The Pennsylvania State University, University Park, Pennsylvania, 1988.

[25] E. Rothberg and A. Gupta. Fast sparse matrix factorization on modern worksta-

tions. Technical Report STAN-CS-89- 1286, Stanford University, Stanford, Cali-
fornia, 1989.

[26] R. Schreiber. A new implementation of sparse Gaussian elimination. ACM Truns.
Math. Software, 8:256-276, 1982.

[27] A.H. Sherman. O n the efficient solutiora of sparse systems of linear and nonlinear
equations. PhD thesis, Yale University, 1975.

[28] H.D. Simon, P.A. Vu, and C.W. Yang. Sparse matrix at 1.68 Gflops. Technical

report, Boeing Computer Services, Seattle, Washington, 1989.

[29] C. Yang. A vector/parallel implementation of the multifrontal method for sparse

symmetric definite linear systems on the Cray Y-MP. Cray Research Inc., Mendota

Heights, MN, 1990.

- 31 -

ORNL/TM-11814

INTERNAL DISTRIBUTION

1. B. R. Appleton
2-3. T. S. Darland

4. E. F. D’Azevedo
5. J . J . Dongarra
6. G . A. Geist
7. E. R. Jessup
8. M. R. Leuze

14. C. E. Oliver
9-13. E. G . Ng

15-19. B. W. Peyton
20-24. S. A. Raby

25. C. 1%. Romine

26. T. H . Rowan
27-31. R. E’. Sincovec
32-36. R. C. Ward

37. P. It. Worley
38. Central Research T,ibrary
39. ORNL Patent Office
40. K-25 Plant Library
41. Y-12 Technical Library /

42. Laboratory Records - RC
Document Reference Station

43 -44. Laboratory Records Department

EXTERNAL DISTRIBUTION

45. Cleve Ashcraft, Roeing Cornputer Services, P.O. Box 24346, M/S 71,-22, Seattle,

46. Donald M. Austin, 6196 EECS Bldg., University of Minnesota, 200 Union St.,
S.E., Minneapolis, MN 55455

47. Robert G. Rabb, Oregon Graduate Institute, CSE Department, 19600 N.W. von
Neumann Drive, Heaverton, OR 97006-1999

48. Lawrence J . Baker, Exxon Production Research Company, P.O. Box 2189, Hous-
ton, TX 77252-2189

49. Jesse L. Barlow, Department of Computer Science, Pennsylvania State University,
University Park, PA 16802

50. Edward B. Harsis, Cornputer Science and Mathematics, P. 0. Box 5800, Sandia
National Laboratories, Albuquerque, NM 87185

51. Chris Bischof, Mathernatics and Computer Science Division, Argonne National
Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

52. Ake 13jorck, Department of Mathematics, Linkoping University, S-581 83 Linkop-
ing, Sweden

53. Jean It. S . Blair, Department of Cornputer Science, Ayres Hall, University of
Tennessee, Knoxville, T N 37996-1301

54. Roger W. Brockett, Wang Professor of Electrical Engineeririg and Computer Sci-
ence, Division of Applied Sciences, Harvard University, Cambridge, MA 021 38

55. James C. Browne, Department of Computer Science, University of Texas, Austin,
T X 78712

56. Bill L. Buzbee, Scientific Computing Division, National Center for Atmospheric
Research, P.O. Box 3000, Boulder, CO 80307

WA 98124-0346

- 32 -

57. Donald A. Calahan, Department of Electrical and Computer Engineering, Univer-
sity of Michigan., Ann Arbor, MI 48109

58. John Cavallini, Acting Director, Scientific Computirrg Staff, Applied Mathematical
Scienccs, Office of Energy Fksearch, U.S. Department of Energy, Washington, DC
20585

59. Ian Cavers, Department of Computer Science, University of British Columbia,
Vancouver, British Coliirribia V6T 1W5, Canada

60. Tony Chan, Department of Mathematics, University of California, Los Angeles,
405 Hilgard Avenue, Los Angeles, CA 90024

61. Jagdish Chandra, Army Research Ofice, P.O. Box 12211, Research Triangle Park,
NC 2'1'709

62. Eleanor Chu, Department of Computer Science, University of Waterloo, Waterloo,
Ontario, Canada N2L 3G1

63. Melvyn Ciment, National Science Foundation, 1800 G Street N.W., Washington,
DC 20.550

64. Tom Coleman, Department of Computer Science, Cornel1 University, Ithaca, N Y
14853

65. Paul Concus, Mathematics and Computing, Lawrence Berkeley Laboratory, Berke-
ley, CA 94720

66. Andy Conn, IBM T. J . Watson Research Center, P.O. Box 218, Yorktown Heights,
NY 10598

67. John M . Conroy, Supercomputer Research Center, 17100 Science Drive, Bowie,
MD 20715-4300

68. Jane IC. Cullimr, IBM T. J . Watson Research Center, P.O. Box 218, Yorktown
Heights, NY 10598

69. George Cybenko, Ccnter for Supercomputing Research and Development, Univer-
sity of Illinois, 104 S. Wright Street, Urbana, IL 61801-2932

70. George J . Davis, Department of Mat.hematics, Georgia State University, Atlanta,
GA 30303

71. Tim A . Davis, Computer and Information Sciences Department, 301 CSE, Uni-
versity of Florida, Gainesville, Florida 32611-2024

72. John J . Doming, Department of Nuclear Engineering Physics, 'Thornton Hall,
McCormick Road, University of Virginia, Charlottesville, VA 22901

73. Iain Duff, Numerical Analysis Group, Central Computing Department, Atlas Cen-
tre, Rutherford Appleton J,aboratory, Diclcot, Oxon OX11 OQX, England

74. Patricia Eberlein, Department of Computer Science, SUNY at Buffalo, Buffalo,
NY 14260

75. Stanley Eisenstat, Department of Computer Science, Yale University, P.O. Box
2158 Yale Station, New Haven, CT 06520

76. Lars Elden, Department of Mathematics, Linkoping University, 581 83 Linkoping,
Sweden

- 33 -

77. Howard C. Elman, Computer Science Department, University of Maryland, Col-
lege Park, MD 20742

78. Albert M. Erisman, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seat-
tle, WA 98124-0346

79. Geoffrey C. Fox, Department of Physics, Itoom 229.1, Syracuse University, Syra-
cuse, NY 13244-1130

80. Paul 0. Frederickson, NASA Ames Research Center, RIACS, M/S T045-1, Moffett
Field, CA 94035

81. Red N. Fritsch, 1,-300, Mathematics and Statistics Division, Lawrence Liverniore
National Laboratory, P.O. Box 808, Livermore, CA 94550

82. Robert E. Funderlic, Department of Computer Science, North Carolina State 'CJni-
versity, Raleigh, NC 27650

83. K . Gallivan, Computer Science Department, University of Illinois, Urbana, IL
61801

84. Dennis B. Gannon, Computer Science Department, Indiana University, Hlooming-
ton, IN 47405

85. Feng Gao, Department of Computer Science, University of British Columbia, Van-
couver, British Columbia V6T 1W5, Canada

86. David M. Gay, Bell Laboratories, 600 Mountain Avenue, Murray IIill, N J 07974

87. C. William Gear, Computer Science Department, University of Illinois, IJrbana,

88. W. Morven Gentleman, Division of Electrical Engineering, National Research
Council, Building M-50, Room 344, Montreal Road, Ottawa, Ontario, Canada
K1A OR8

89. J. Alan George, Vice President, Academic and Provost, Needles Hall, University
of Waterloo, Waterloo, Ontario, Canada N2L 3 6 1

90. John R. Gilbert, Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo
Alto CA 94304

91. Gene 11. Golub, Department of Computer Science, Stanford University, Stanford,
CA 94305

92. Joseph F. Grcar, Division 833 1, Sandia National Laboratories, Livermore, CA
94550

93. John Gustafson, Anim Laboratory, Iowa State University, Ames, IA 5001 1

94. Per Christian Hansen, UCI*C Lyngby, Building 305, Technical University of Den-
mark, DK-2800 Lyngby, Denmark

95. Richard Hanson, IMSL Inc., 2500 Park West Tower One, 2500 City West Blvd.,
Houston, T X 77042-3020

96. Michael T. Heath, Center for Supercomputing Research and Development, 305
Talbot Laboratory, University of Illinois, 104 South Wright Street, Urbana, IL

97. Don E. Heller, Physics and Computer Science Department, Shell Development
Co., P.O. Box 481, IIouston, T X 77001

Ir, 61801

61801-2932

- 34 -

98. Nicholas J I Iiigham, Department of Mathematics, University of Manchester, Grt
Manchester, M13 9PL, England

99. Charles J . Ilolland, Air Force Office of Scientific Research, Building 410, Bolling
Air Force Base, Washington, DC 20332

100. Robert E. Huddleston, Computation Department, Lawrence Livermore National
Laboratory, P.O. Box 808, Livermore, CA 94550

101. Ilse Ipsen, Department of Computer Science, Yale IJniversity, P.O. Box 2158 Yale
Station, New IIaven, CT 06520

102. Leniiart Johnsson, Thinking Machines Inc., 245 First Street, Cambridge, MA
02142-1214

103. Harry Jordan, Department of Electrical and Computer Engineering, University of
Colorado, Boulder, CO 80309

10.1. Barry Joe, Department of Computer Science, University of Alberta, Edmonton,
Alberta T6G 2H1, Canada

105. Bo Kagstroiri, 1nstitut.e of Information Processing, University of Umea, 5-901 87
Umea, Sweden

106. Malvyn H. Kalos, Cornell 'rheory Center, Engineering and Theory Center Bldg.,
Cornell University , It h aca, NY 14 8 5 3-390 1

107. Hans Kaper, Mathematics and Computer Science Division, Argonrie National Lab-
oratory, 9'700 South C a s Avenue, Bldg. 221, Argonne, IT, 60439

108. Linda Kaufman, Bell Laboratories, 600 Mountain Avenue, Murray Hill, N J 07974

109. Robert J . Kee, Applied Mathematics Division 8331, Sandia National Laboratories,
Livermore, CA 94550

110. Kenneth Kennedy, Department of Computer Science, Rice University, P.O. Rox
1892, Houston, T X 77001

111. Thoma? Kitchens, Department of Energy, Scientific Computing Staff, Office of
Energy Research, ER-7, Ofice G-236 Germantown, Washington, DC 20585

112. Richard Lau, Office of Naval Research, 1030 E. Green Street, Pasadena, CA 91101

113. Alan J . Laub, Departineirt of Electrical and Compuber Engineering, University of
California, Santa Barbara, CA 93106

114. Robert L. Launer, Army Research Office, P.O. Box 12211 ~ Research Triangle Park,
NC 27709

115. Charles Tawson, MS 301-490, Jet Propulsion Laboratory, 4800 Oak Grove Drive,
Pasadena, CA 91109

116. Peter D. Lax, Courant Institute of Mathematical Sciences, New York University,
251 Mercer Street, New York, NY 10012

117. James E. Leiss, 13013 Chestnut Oak Drive, Gaithersburg, hlD 20878

118. John G. Lewis, Roeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle,
WA 98121-0346

119. Jing Li, IMSL Tnc., 2500 Park West Tower One, 2500 City West Blvd., Houston,
T X 77042-3020

- 35 -

120. Heather M. Liddell, Center for Parallel Computing, Department of Computer
Science and Statistics, Queen Mary College, University of London, Mile End Road,
London E l 4NS, England

121. Arno Liegmann, c/o ETH Rechenzentrum, Clausiusstr. 55, CH-8092 Zurich, Switzer-
land

122. Joseph Liu, Department of Conipiiter Science, York University, 4700 Keele Street,
North York, Ontario, Canada M3J 1P3

123. Robert F. I,ucas, Supercomputer Research Center, 17100 Science Drive, Bowie,
MD 20715-4300

124. Franklin Luk, Electrical Engineering Department, Cornel1 University, Ithaca, NY
14853

125. Thomas A. Manteuffel, Department of Mathematics, University of Colorado -
Denver, Campus Box 170, P.O. Box 173364, Denver, CO 80217-3364

126. Paul C. Messina, Mail Code 158-79, California Institute of Technology, 1201
E. California Blvd., Pasadena, CA 91125

127. James McGraw, Lawrence Livermore National Laboratory, L-306, P.O. Box 808,
Livermore, CA 94550

128. Neville Moray, Department of Mechanical and Industrial Engineering, University
of Illinois, 1206 West Green Street, Urbana, IL 61801

129. Cleve Moler, The Mathworks, 325 Linfield Place, Menlo Park, CA 94025

130. Brent Morris, National Security Agency, Ft. George G. Meade, MD 20755

131. Dianne P. O’Leary, Computer Science Department, University of Maryland, Col-
lege Park, MD 20742

132. James M. Ortega, Department of Applied Mathematics, ’Thornton Hall, university
of Virginia, Charlottesville, VA 22901

133. Chris Paige, Departrnent of Computer Science, McGill University, 805 Sherbrooke
Street W., Montreal, Quebec, Canada H3A 2K6

134. Roy P. Pargas, Department of Computer Science, Clemson University, Clemson,

135. Reresford N. Parlett, Department of Mathematics, University of California, Berke-
ley, CA 94720

136. Merrell Patrick, Department of Computer Science, Duke University, Diirharn, NC
27706

137. Robert J. Plcmmons, Departments of Mathematics and Computer Science, Box
7311, Wake Forest University Winston-Salem, NC 27109

138. Jesse Poore, Department of Computer Science, Ayres Hall, University of ‘Ten-
nessee, Knoxville, T N 379981301

139. Alex Pothen, Department of Computer Science, Pennsylvania State TJniversity,
University Park, PA 16802

140. Yuanchang Qi, IBM European Petroleum Application Center, P.O. Box 585, N-
4010 Hafrsfjortl, Norway

SC 29634-1906

- 36 -

141. Giuseppe Radicati, TBM European Center for Scientific and Engineering Comput-
ing, via del Giorgione 159, 1-00147 Roma, Italy

142. John K. Reid, Numerical Analysis Group, Central Computing Department, Atlas
Centre, Rutherford Appleton Laboratory, Didcot, Oxon OX1 1 OQX, England

143. Werner C. Rheiiiboldt, Department of Mathematics and Statistics, Tiniversity of
Pittshurgh, Pittsburgh, PA 15260

144. John It. Rice, Computer Science Department, Purdue University, West Lafayette,
IN 47907

145. Garry Rodriguc, Numerical Mathematics Group, Lawrence Livermore Laboratcry,
Livermore, CA 94550

146. Donald J . Rose, Department of Computer Science, Duke University, Durham, NC
27706

147'. Edward Kotjiherg, Department of Computer Science, Stanford University, Stan-
ford, CA 94305

148. Axel Rube, Uept. of Computer Science, Chalmers University of 'I'echnology, S-
41296 Goteborg, Sweden

149. Joel Saltz, ICASE, MS 132C, NASA Langley Research Center, Iiamptoii, VA
23665

150. Ahmed H. Sarneh, Center for Supercoinp~ting R&D, 1384 W. Springfield Avenue,
University of Illinois, Urbana, IL 61801

151. Michael Saunders, Systems Optimization Laboratory, Operations Research De-
partment, Stanford University, Stanford, CA 94305

152. Robert Schreiber, RIACS, Mail Stop 230-5, NASA Arnes Research Center, Moffet
Field, CA 94035

153. Martin H . Schult,z, Departnient of Computer Science, Yale University, P.O. Box
2158 Yale Station, New Haven, CT 06520

154. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaver-
ton, OR 97006

155. Lawrence F. Shairipine, Mathematics Department, Soutliern Methodist University,
Dallas, TX 75275

156. Andy Sherman, Depart,rrient of Computes Science, Yale TJniversity, P.O. Box 2158
Yale Station, New Haven, CT 06520

157. Kermit Sigmon, Department of Mathematics, University of Florida, Gainesville,
FL 32611

158. Horst Simon, Mail Stop T045-1, NASA Ames Research Center, Moffett Field, CA
94035

159. Anthony Skjellurri, Lawrence Livermore National T,aboratory, 7000 East Ave., 1,
316, P.O. Box 808 Livermore, CA 94551

160. Danny C. Sorensen, Departrneni ofMathematica1 Sciences, Rice University, P. 0. Box
1892, Houston, T X 77251

161. G . W. Stewart, Computer Science Department, University of Maryland, College
Park, MI_, 20742

- 37 -

162. Paul N. Swartztrauber, National Center for Atmospheric Research, P.O. Box 3000,
Boulder, CO 80307

163. Philippe Toint, Dept. of Mathematics, University of Namur, FUNOP, 61 rue de
Bruxelles, €3-Namur, Belgium

164. Bernard ‘I’ourancheau, LIP, ENS-Lyon, 69364 Lyon cedex 07, France

165. Bank Van der Vorst, Dept. of Techn. Mathematics and Computer Science, Delft
University of Technology, P.O. Box 356, NL-2600 AJ Delft, The Netherlands

166. Charles Van Loan, Department of Computer Science, Cornel1 University, Ithaca,
NY 14853

167. Jim M. Varah, Centre for Integrated Computer Systems Research, University of
British Columbia, Office 2053-2324 Maiii Mall, Vancouver, British Columbia V6T
1W5, Canada

168. Udaya El. Vemulapati, Dept. of Computer Science, University of Central Florida,
Orlando, FL 32816-0362

169. R.obert G. Voigt, ICASE, MS 132-6, NASA Langley Research Center, Harnpton,
VA 23665

170. Phuong Vu, Cray Research, Tnc., 655F Lone Oak Drive, Eagan, M N 55121

171. Daniel D. Warner, Department of Mathematical Sciences, 0- 104 Martin Hall,
Clemson University, Clernson, SC 29631

172. Mary F. Wheeler, Itice University, Department of Mathematical Sciences, P.O. Box
1892, Houston, T X 77251

173. Andrew I3. White, Computing Division, 1,os Alamos National Laboratory, P.0. Box
1663, MS-265, Los Alamos, NM 87545

174. Margaret Wright, Bell Laboratories, 600 Mountain Avenue, Murray Hill, N J
07974

175. David Young, University of Texas, Center for Numerical Analysis, RLM 13.150,
Austin, TX 78731

176. Earl Zmijewski, Departmcrit of Computer Science, University of California, Santa
Barbara, CA 93106

177. Office of Assistant Manager for Energy Research and Development, U.S. Depart-
ment of Energy, Oak Ridge Operations Office, P.O. Rox 2001 Oak Ridge, T N
37831-8600

178-187. Office of Scientific & Technical Information, P.O. Box 62, Oak Ridge, T N 37831

